Time-Optimal Trajectory Generation for Dynamic Vehicles: A Bilevel Optimization Approach

Duke University, Durham, NC, USA Gao Tang*, Weidong Sun*, and Kris Hauser

INTRODUCTION

- Time-optimal trajectory generation for dynamic vehicles is hard because of nonlinear objective and complex constraints.
- We reframe the NLP as a bilevel optimization.
- The lower-level optimization is a nonlinear convex problem, the upper-level optimization is a small scale nonlinear problem.
- Gradients are computed through first-order sensitivity analysis.
- Our method is any-time feasible.
- Numerical experiments show our method performs more robustly

Figure 1. Sparsity pattern of KKT systems. Left to right: the original reduced KKT system, manually reordered reduced KKT matrix with a bandwidth of 6, the L and L^T matrix after LDL factorization used in CVXOPT. Figure 2. Sparsity after LU factorization. Natural (without reduce fill-in permutation) gives 668 nonzeros,, COLMAD gives 457 nonzeros, our reordering gives 383 nonzeros.

Solver	<i>N</i> = 25	<i>N</i> = 50	<i>N</i> = 100	<i>N</i> = 200
CVXOPT	0.119	0.749	1.30	48.940
Natural + LU	0.011	0.028	0.093	0.414
COLMAD + LU	0.009	0.018	0.035	0.072
Reorder + LU	0.010	0.017	0.032	0.069

LU Natural LU COLAMD LU Reorder

than general NLP solvers (SNOPT, IPOPT).

Methodology

Time-optimal Trajectory Generation

 $\begin{array}{l} \mbox{minimize } T \\ \mbox{subject to } q(t) \in X_{\rm free} \ , \forall t \in [0,T] \\ q(0) = q_s \\ q(T) \in X_{\rm goal} \\ h(q,\dot{q},\ddot{q},u) = 0 \\ f(q,\dot{q},\ddot{q},u) \leq 0 \end{array} \ \begin{array}{l} \mbox{Dynamics} \\ \mbox{Bounded velocity/acceleration} \end{array}$

Bilevel^[2] Formulation

ġ(

minimize T subject to $c(s) \in X_{\text{free}}, \forall s \in [0,1]$ $c(0) = q_s$ $c(1) \in X_{\text{goal}}$ $T \in \text{TOPP}(c, h(\cdot), f(\cdot))$ Time-optimal Path Parameterization (TOPP) Table 1. Comparison of running time for solving the reduced KKT system once (in seconds) on different solvers. Experiment uses 9 convex polygons, each one is discretized into N segments

Experiments

Friction circle model^[4]: $\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} u_x \\ u_y \end{bmatrix} = \begin{bmatrix} \ddot{x} \\ \ddot{y} \end{bmatrix}$ $\int u_x^2 + u_y^2 \le \mu g, u_x \le \mu_s \mu g$ Figure 3. Friction circle model Outdoor racing track: Circuit Ricardo Tormo

- Bilevel Optimization is solved using Quasi-Newton method.
- Gradient is computed by sensitivity analysis of parametric NLPs^[1]: $\nabla_c J^* = \nabla_c J + \lambda^T \nabla_c f(\cdot) + \nu^T \nabla_c h(\cdot)$
- TOPP: find a time parameterization s along a given geometric path c to achieve minimum traversal time:

$$T = \int_0^1 1dt = \int_{s(0)}^{s(T)} \frac{1}{\dot{s}} ds = \int_0^1 \frac{1}{\dot{s}} ds$$
$$t) = p'(s)\dot{s}(t), \qquad \ddot{q}(t) = p'(s)\ddot{s}(t) + p''(s)\dot{s}^2(t)$$

• Constraints on dynamics, velocity $(\dot{q}(t))$ and acceleration $(\ddot{q}(t))$ can be imposed in terms of $a = \ddot{s}$ and $b = \dot{s}^2$.

Efficient TOPP solver

- A primal-dual interior point method w/ a customized KKT solver
- We use a nonlinear objective: SOCP formulation^[3] is inefficient as the size of the problem might be doubled by introducing slacks^[4].
- Eliminating variables: to reduce the number of variables, we replace a_i

Indoor racing track: Tamiya Asia Cup Finals 2011

with a linear combination of b_i :

$$a_i = (b_{i+1} - b_i)/2\Delta s_i$$

 Customized KKT solver that exploits the sparsity pattern of the reduced KKT system:

 $\begin{bmatrix} S & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = rhs,$ where $S = H + \tilde{G}^T W^{-1} W^{-T} \tilde{G}$, \tilde{G} includes the gradients of both linear and nonlinear inequality constraints, W is a diagonal scaling matrix, A is the linear equality matrix.

- Our solver is any-time and highly robust than general nonlinear solvers like SNOPT and IPOPT.
- An efficient TOPP solver based on a customized nonlinear convex solver is presented.

REFERENCES

[1] A. V. Fiacco, Introduction to sensitivity and stability analysis in nonlinear programming. Elsevier, 1983.
[2] A. Sinha, P. Malo, and K. Deb, "A review on bilevel optimization: from classical to evolutionary approaches and applications," IEEE Transactions on Evolutionary Computation, vol. 22, no. 2, pp. 276–295, 2018.
[3] D. Verscheure, B. Demeulenaere, J. Swevers, J.D. Schutter, and M. Diehl, "Time-optimal path tracking for robots: A convex optimization approach," *IEEE Transactions on Automatic Control*, vol. 54, no. 10, pp.2318–2327, Oct 2009.
[4] T. Lipp and S. Boyd, "Minimum-time speed optimisation over a fixed path," *International Journal of Control*, vol. 87, no. 6, pp. 1297–1311, 2014.

ICRA 2019