Time-Optimal Trajectory Generation for Dynamic
Vehicles: A Bilevel Optimization Approach
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INTRODUCTION

Time-optimal trajectory generation for dynamic vehicles is hard
because of nonlinear objective and complex constraints.

We reframe the NLP as a bilevel optimization.

The lower-level optimization is a nonlinear convex problem, the
upper-level optimization is a small scale nonlinear problem.
Gradients are computed through first-order sensitivity analysis.
Our method is any-time feasible.

Numerical experiments show our method performs more robustly
than general NLP solvers (SNOPT, IPOPT).

Methodology

Time-optimal Trajectory Generation
minimize T
subject to g(t) € Xfree, Vt € [0, T]
CI(O) — (s
CI(T) S Xgoal
h(q,q9,¢,u) =0
f(q,q,4,u) <0

= Bilevell2l Formulation

Dynamics
Bounded velocity/acceleration

minimize T
subject to c(s) € Xfree , Vs € [0,1]
C(O) = (s

c(1) € Xgoal
T € TOPP(c,h(:),f(-)) Time-optimal
Path Parameterization (TOPP)

" Bilevel Optimization is solved using Quasi-Newton method.
= Gradient is computed by sensitivity analysis of parametric NLPs!1:
V" =V ] + ATvcf(') T VTvch(')
" TOPP: find a time parameterization s along a given geometric path
¢ to achieve minimum traversal time:
11
f —,dS
0 S

1 s(T) 1
f 1dt = f —ds =
0 s(0) °

qt) =p'(s)s(t),  G) =p'(s)5(t) +p" (s)$%(t)

= Constraints on dynamics, velocity (g(t)) and acceleration (G (t))
can be imposed in terms of a = § and b = s2.

T =

Efficient TOPP solver

A primal-dual interior point method w/ a customized KKT solver
We use a nonlinear objective: SOCP formulation!3! is inefficient as the size
of the problem might be doubled by introducing slacks!%.

Eliminating variables: to reduce the number of variables, we replace a;
with a linear combination of b;:

a; = (bj+1 — b;)/2As;

Customized KKT solver that exploits the sparsity pattern of the reduced

KKT system:

1 olbl=me

where S = H+ GTW=IW TG, G includes the gradients of both
linear and nonlinear inequality constraints, W is a diagonal scaling
matrix, A is the linear equality matrix.
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Figure 2. Sparsity after LU factorization.
Natural (without reduce fill-in permutation)
gives 668 nonzeros,, COLMAD gives 457

nonzeros, our reordering gives 383 nonzeros.

Figure 1. Sparsity pattern of KKT systems. Left
to right: the original reduced KKT system,
manually reordered reduced KKT matrix with a
bandwidth of 6, the L and L matrix after LDL

factorization used in CVXOPT.
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Table 1. Comparison of running time for solving the reduced KKT system once (in seconds) on
different solvers. Experiment uses 9 convex polygons, each one is discretized into N segments

Experiments
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Figure 4. Time-optimal path for Circuit Ricardo Tormo

" |ndoor racing track: Tamiya Asia Cup Finals 2011
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Figure 5. Time-optimal path for Tamiya Asia Cup Finals 2011
= Convergence and constraint violation w.r.t. computation time
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Figure 6. Left: outdoor track, right: indoor track

CONCLUSION

Our solver is any-time and highly robust than general nonlinear

solvers like SNOPT and IPOPT.
An efficient TOPP solver based on a customized nonlinear convex

solver is presented.
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