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INTRODUCTION
§ Time-optimal trajectory generation for dynamic vehicles is hard 

because of nonlinear objective and complex constraints.
§ We reframe the NLP as a bilevel optimization. 
§ The lower-level optimization is a nonlinear convex problem, the 

upper-level optimization is a small scale nonlinear problem.
§ Gradients are computed through first-order sensitivity analysis.
§ Our method is any-time feasible.
§ Numerical experiments show our method performs more robustly 

than general NLP solvers (SNOPT, IPOPT). 

Methodology

§ Time-optimal Trajectory Generation

§ Bilevel[2] Formulation

§ Bilevel Optimization is solved using Quasi-Newton method.
§ Gradient is computed by sensitivity analysis of parametric NLPs[1]:
∇"𝐽⋆ = ∇"𝐽 + 𝜆(∇"𝑓(⋅) + 𝜈(∇"ℎ ⋅

§ TOPP: find a time parameterization s along a given geometric path 
c to achieve minimum traversal time:

§ Constraints on dynamics, velocity (𝑞̇(𝑡)) and acceleration (𝑞̈(𝑡))
can be imposed in terms of 𝑎 = 𝑠̈ and 𝑏 = 𝑠̇6.

Efficient TOPP solver
§ A primal-dual interior point method w/ a customized KKT solver
§ We use a nonlinear objective:  SOCP formulation[3] is inefficient as the size 

of the problem might be doubled by introducing slacks[4]. 
§ Eliminating variables: to reduce the number of variables, we replace 𝑎7

with a linear combination of 𝑏7:

§ Customized KKT solver that exploits the sparsity pattern of the reduced 
KKT system:

Experiments
§ Friction circle model[4]:

§ Outdoor racing track: Circuit Ricardo Tormo

§ Indoor racing track: Tamiya Asia Cup Finals 2011

§ Convergence and constraint violation w.r.t. computation time

CONCLUSION
§ Our solver is any-time and highly robust than general nonlinear 

solvers like SNOPT and IPOPT.
§ An efficient TOPP solver based on a customized nonlinear convex 

solver is presented.
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Figure 1. Sparsity pattern of KKT systems. Left 
to right: the original reduced KKT system, 
manually reordered reduced KKT matrix with a 
bandwidth of 6, the 𝐿 and 𝐿(matrix after LDL 
factorization used in CVXOPT.

Solver N = 25 N = 50 N = 100 N = 200
CVXOPT 0.119 0.749 1.30 48.940

Natural + LU 0.011 0.028 0.093 0.414
COLMAD + LU 0.009 0.018 0.035 0.072
Reorder + LU 0.010 0.017 0.032 0.069

KKT Reorder KKT CVXOPT

LU Natural LU COLAMD LU ReorderKKT Reorder KKT CVXOPT

LU Natural LU COLAMD LU Reorder

Table 1. Comparison of running time for solving the reduced KKT system once (in seconds) on
different solvers. Experiment uses 9 convex polygons, each one is discretized into N segments
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Figure 4. Time-optimal path for Circuit Ricardo Tormo

Figure 5. Time-optimal path for Tamiya Asia Cup Finals 2011
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minimize 𝑇
subject to 𝑞 𝑡 ∈ 𝑋<=>> , ∀𝑡 ∈ [0, 𝑇]

𝑞 0 = 𝑞D
𝑞 𝑇 ∈ 𝑋EFGH
ℎ 𝑞, 𝑞̇, 𝑞̈, 𝑢 = 0
𝑓 𝑞, 𝑞̇, 𝑞̈, 𝑢 ≤ 0

minimize 𝑇
subject to c 𝑠 ∈ 𝑋<=>> , ∀𝑠 ∈ [0,1]

c 0 = 𝑞D
c 1 ∈ 𝑋EFGH
T ∈ TOPP(𝑐, ℎ ⋅ , 𝑓 ⋅ )
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Figure 2. Sparsity after LU factorization. 
Natural (without reduce fill-in permutation) 
gives 668 nonzeros,, COLMAD gives 457 
nonzeros, our reordering gives 383 nonzeros.
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𝑢V
𝑢W = 𝑥̈

𝑦̈

𝑢V6 + 𝑢W6 ≤ 𝜇𝑔, 𝑢V ≤ 𝜇D𝜇𝑔
Figure 3. Friction circle model
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𝑞̇ 𝑡 = 𝑝a(𝑠)𝑠̇ 𝑡 , 𝑞̈ 𝑡 = 𝑝a(𝑠)𝑠̈(𝑡) + 𝑝aa 𝑠 𝑠̇6(𝑡)

𝑆 𝐴(
𝐴 0

𝑥
𝑦 = 𝑟ℎ𝑠,

where 𝑆 = 𝐻 + f𝐺(𝑊i^𝑊i( f𝐺, f𝐺 includes the gradients of both 
linear and nonlinear inequality constraints, 𝑊 is a diagonal scaling 
matrix, 𝐴 is the linear equality matrix.

𝑎7 = (𝑏7j^ − 𝑏7)/2Δ𝑠7
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Figure 6. Left: outdoor track, right: indoor track


