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Abstract— This contribution presents a framework to find
time-optimal trajectories for dynamic vehicles like drones and
autonomous cars. Hindered by its nonlinear objective and
complex constraints, this problem is challenging even for state-
of-the-art nonlinear programming (NLP) solvers. The proposed
framework addresses the problem by bilevel optimization.
Specifically, the original problem is divided into a lower-level
problem, which computes a time-optimal velocity profile along a
pre-specified geometric path, and an upper-level problem, which
optimizes the geometric path by a Quasi-Newton method. The
lower-level problem is convex and efficiently solved by interior-
point methods using a customized KKT solver with variable
reordering. Then, the gradients of the objective function can be
derived from the Lagrange multipliers using sensitivity analysis.
The method is guaranteed to return a feasible solution at any
time, and numerical experiments on a ground vehicle with
friction circle model show that the proposed method performs
more robustly than general nonlinear solvers.

I. INTRODUCTION
Time-optimal trajectory generation is an important topic

in robotics to increase task efficiency. Existing techniques
can be categorized into direct collocation or two-stage
approaches. The direct collocation approach optimizes a
discretized representation of the trajectory, both positions,
velocities, and controls. However, this approach has to handle
nonlinear dynamics and non-convex constraints, requiring
solution of a Nonlinear Programming (NLP) problem. There
is no guarantee that an optimal, or even feasible solution
is obtained. The two-stage approach is an approximation
technique where a geometric path is optimized separately
from the speed along the path. Each of these optimization
steps is more numerically stable, and time-optimal path
parameterization (TOPP) approaches have been specialized
to quickly and robustly optimize the speed along the path.
However, in the two-stage approach the path is fixed after
the first stage, and cannot be optimized further to reduce
trajectory time.

We introduce a novel bilevel optimization approach that
robustly and efficiently solves the time-optimal trajectory
generation problem. Our approach hierarchically solves the
path optimization and speed optimization subproblems : the
lower-level problem solves time-optimal path parameteriza-
tion (TOPP) which computes a time-optimal velocity profile
along a geometric path by nonlinear convex optimization,
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the upper-level problem refines the geometric path using a
Quasi-Newton method to achieve lower traversal time.

Our algorithm is applied to a ground racing vehicle
whose dynamics obey a friction circle model. Experiments
demonstrate the robustness and any-time feasibility of our
approach against state-of-the-art NLP solvers IPOPT [1] and
SNOPT [2].

II. METHOD

A. Problem Formulation

We want to find a trajectory that travels from the start
to the goal set in a minimum amount of time while being
collision-free, respecting the dynamics and other system
constraints like bounds on velocity and acceleration. The
problem can be mathematically formulated as:

minimize
q(t),u(t)

T

subject to q(t) ∈ Xfree, ∀t ∈ [0, T ]
q(0) = qs,
q(T ) ∈ Xgoal,
h(q(t), q̇(t), q̈(t), u(t)) = 0, ∀t ∈ [0, T ]
f(q(t), q̇2(t), q̈(t), u(t)) ≤ 0, ∀t ∈ [0, T ]

(1)
where T is the traversal time, q ∈ Rn is the generalized
configuration of the robot parametrized by time t, Xfree
denotes all the collision-free configurations, qs is the start
configuration, Xgoal denotes the goal region, u(t) is the
control input, function h(·) encodes the dynamics constraints
and f(·) includes other system constraints.

B. Algorithm

In this work, we compute time-optimal trajectories for
dynamic vehicles on a racing track. The track is decomposed
into several convex regions and the trajectory is represented
using Bézier spline. The path constraint can thus be written
as linear constraints on the spline control points.

An algorithm for solving bilevel optimization is presented
in Algorithm 1. The algorithm takes an initial guess of the
geometric path p0 and the linear constraints on the path
encoded in Gp0 ≤ h and Ap0 = b. We note that linear
constraints are sufficient in many cases. Nonlinear constraints
can also be handled at the cost of any-time feasibility.

In each iteration, the TOPP solver takes a path p and
an fixed optimality parameter µ arbitrarily chosen to be
10−4, then outputs a cost J , Lagrange multipliers λ and
time parameterization {bi}Ni=0. The TOPP solver will solve
the linear complementary condition to this value instead of
0. By doing this, TOPP takes fewer iterations to converge,



and the upper optimization problem gets smoother gradient.
Besides, this also enables warm start of TOPP solver. This
parameter is equivalent to the coefficient in log barrier
method, but the primal-dual framework does not require a
feasible initial guess. Gradient g of the path p is computed
using Lagrange multipliers in the Get-Gradient function, and
later used to update the path. Results from sensitivity analysis
of parametric NLPs are used to compute the gradient. Any
gradient-based method can be used as the Take-A-Step
function which updates x based on gradient g and possibly
its history (in Quasi-Newton approaches). We use an off-the-
shelf NLP solver SNOPT to perform Take-A-Step function.
Even though we are using a NLP solver, constraints in
upper-level optimization are linear so feasibility is always
guaranteed. Optimality conditions are checked by the NLP
solver.

Algorithm 1 Bilevel-Solver (p0, G, h,A, b, µ)
1: p← p0
2: for i← 0 to max-iterations do
3: J, λ, {bi}Ni=0 ← TOPP(p, µ)
4: g ← Get-Gradient(λ)
5: x← Take-A-Step(x, J, g,G, h,A, b)
6: if optimality-conditions-satisfied then
7: break
8: return p, {bi}Ni=0

C. Efficient TOPP

The goal of TOPP is to find a time parameterization s,
with the geometric path p already given, so that the traversal
time is minimized while satisfying dynamic and other system
constraints. It can be formulated as a convex optimization
problem under appropriate assumptions [3], [4]. We apply
three speed-up strategies to solve TOPP more efficiently:

1) Nonlinear Objective: Verscheure et al. [3] formulated
TOPP as a SOCP, which is inefficient because the size of
the original problem might even be doubled through the
introduction of slack variables. In this paper, the nonlinear
objective is directly solved.

2) Eliminating Variables: To reduce the number of vari-
ables, we replace {ai}N−1

i=0 with a linear combination of
{bi}Ni=0, i.e., ai = (bi+1 − bi)/2∆si.

3) Customized KKT solver: An efficient KKT system
solver that exploits the structure of the problem allows signif-
icant acceleration. We apply a row and column permutation
to the reduced KKT matrix to make it banded and use a
LU decomposition implemented in SuperLU [5] to solve the
system.

III. EXPERIMENTS

We test our algorithm on a real-world racing track from
the Tamiya Asia Cup Finals 20111, an RC car track with size
25 m by 11 m. We use a friction circle model [6], and the

1http://quantumracing-rc.blogspot.com/2011/09/
tamiya-asia-cup-finals-2011-in.html, last accessed Apr. 8
2019
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Fig. 1. (a): Cost and constraint are recorded whenever they are evaluated
by the solver. The spikes are caused by line search with inappropriate step
length. Nonlinear solvers fail to maintain feasibility even if starting from a
feasible solution. (b): The black curve is the geometric path. The red star
denotes the starting position.

results are shown in Fig.1. Bilevel optimization achieves fast
cost decrease in the early stage, but it converges slowly later.
The NLP solvers fail to satisfy constraints throughout the
optimization process. On the contrary, bilevel optimization
is any-time and always feasible. The NLP solvers, especially
IPOPT, decrease the cost function quickly, but as the right
side of Fig. 1a shows, these solutions are indeed infeasible.
This suggests high numerical sensitivity despite the existence
of a feasible solution. In contrast, the stability of our method
suggests that decoupling path optimization and time alloca-
tion results in better numerical stability.
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