
Fast UAV Trajectory Generation Using Bilevel Optimization

Weidong Sun*, Gao Tang*, and Kris Hauser

Abstract— We present an efficient bilevel optimization frame-
work that solves trajectory optimization problems efficiently by
decoupling state variables from timing variables, thereby de-
composing a challenging nonlinear programming (NLP) prob-
lem into two easier subproblems. With timing fixed, the state
variables can be optimized efficiently using convex optimization
in the lower level optimization, and the timing variables can be
optimized in the upper level. Results from sensitivity analysis
of parametric NLPs shows that the dual solution (Lagrange
multipliers) of the convex optimization problem can be exploited
to calculate the gradient of the time variables. Since the dual
solution is a by-product of the convex optimization problem, the
gradient can be obtained “for free” with high accuracy. The
framework is demonstrated on solving minimum-jerk trajec-
tory optimization problems in safety corridors for unmanned
aerial vehicles (UAVs). Experiments demonstrate that bilevel
optimization reaches a lower cost over a standard NLP solver,
and analytical gradients outperforms finite differences in terms
of computation speed. With a 40 ms cutoff time, our approach
achieves over 8 times better suboptimality than gradient descent
using finite difference gradient approximation.

I. INTRODUCTION

Polynomial trajectories are widely used in motion plan-
ning for UAVs. The trajectory generation problem is often
formulated as a quadratic programming (QP) with the limita-
tion that each segment has predetermined duration (timing).
While the fixed timing can lead to sub-optimal trajectories,
huge improvement can be made by refining the timing, as
shown in Fig. 1. In Mellinger et al. [1], gradient descent
with gradient approximated by finite difference is used for
optimizing timing for each segment. Consequently, it suffers
from the large number of optimization being performed
and low accuracy from finite difference. In this work, we
use sensitivity analysis to get gradient efficiently and accu-
rately, enabling real-time optimization of segment duration.
We present a bilevel optimization framework that solves
trajectory optimization problems efficiently by decoupling
state variables from timing variables, thereby decomposing
a challenging nonlinear programming (NLP) problem into
two easier subproblems: a lower-level problem and a upper-
level problem. With timing fixed, the state variables can be
optimized efficiently using convex optimization in the lower-
level problem, and the timing variables can be optimized
in the upper-level. Key results from sensitivity analysis of

W.Sun and G.Tang are with the Department of Mechanical Engineering
and Materials Science, Duke University. Durham, NC, 27708 USA. e-mail:
{weidong.sun, gao.tang}@duke.edu.

K.Hauser is with the Departments of Electrical and Computer Engineering
and of Mechanical Engineering and Materials Science, Duke University.
Durham, NC, 27708 USA. e-mail: kris.hauser@duke.edu.

* Denotes equal contribution

(a) Trajectories that fly through a gazebo in the forest

(b) Flying corridor formed by axis-aligned boxes

Fig. 1. Trajectories for flying through an outdoor environment mapped in
[3]. The one with unrefined timing, computed by the implementation from
[4], shown in blue, is unnecessarily curvy. In Fig.1b, dots along the curves
are equally distributed times sampled along the trajectory, which show that
the time allocation of the refined trajectory is more evenly distributed.
Statistics of these trajectories are shown in Table. I.

parametric NLP shows that the dual solution (Lagrange mul-
tipliers) to the lower-level problem can be used to compute
analytical gradients to the upper-level problem under mild
regularity conditions [2]. Since the Lagrange multipliers are
a by-product that can be obtained “for free“ by solving
an optimization problem, it is a fast yet accurate way of
computing gradients compared to finite difference. Exper-
iments are conducted on generating trajectories for UAV
in a cluttered environment, which show that our gradient
estimation approach is more efficient than the current state-
of-the-art [1] while also being more accurate. Overall, this
leads to an 8 times improvement in suboptimality when the
optimizer is given a 40 ms cutoff.



TABLE I
STATISTICS FOR FIG.1. LENGTH AND COST ARE SHOWN IN

(REFINED/UNREFINED)

Length #Segments Cost Computation Time
19.9m / 20.7m 19 0.15 / 45.06 352ms

II. METHOD

A. Spline-Based Trajectory Generation

We represent the trajectory as a d’th order Bézier spline
which has n segments and segment durations ∆t1, . . . ,∆tn.
The timing of the i’th connection point is given by ti =
ti−1 +∆ti with t0 = 0. The i’th segment is defined over the
domain [ti−1, ti] as

xi(t) =

d∑
j=0

cij

(
t− ti−1

∆ti

)j
,

where cij is the j’th control point of the i’th segment.
We explicitly split the spatial part and the temporal part

of the trajectory, we gather all the polynomial coefficients
in the flattened vector x ∈ Rn(d+1) (spatial part), and define
the timing as y =

[
∆t1 . . . ∆tn

]
∈ Rn (temporal part).

The trajectory generation is transcribed as an optimization
problem where the objective function is chosen to be the
integral of the squared norm of jerk, i.e., we use a minimum
jerk objective. As shown in [1], [4], the minimum jerk
objective can be written as a quadratic function of the
polynomial coefficients, if the time allocation is fixed. Our
objective function f0 is

f0(x, y) = 1
2x

TP (y)x+ q(y)Tx+ c(y),

where the first and second term encode the minimum jerk
objective, the third term, which only depends on y, penalizes
total traversal time with c(y) = c

∑
i ∆ti = 1T y. In

general, the objective f0(x, y) is quadratic in x (polynomial
coefficients) and nonlinear in y (time allocation).

The trajectory is constrained so that:
1) States at the start and end of the trajectory should

match the initial state and (optional) final state.
2) Continuities at connection points that ensure a smooth

transition between each segment of the trajectory.
3) The whole trajectory lies in the safe region to ensure

collision avoidance.
4) Velocity and acceleration stay in the bound.

The above constraints can be converted to linear constraints
on the Bézier coefficients similar to [4] as:

G(y)x ≤ h(y),

L(y)x = m(y),

where G(y), L(y) and h(y),m(y) are matrices and vectors
which are nonlinear in y.

We also introduce linear timing constraints Ay ≤ b and
Cy = d to enforce positive durations y ≥ 0, and possibly
fixed total time 1T y = T .

In summary, the trajectory generation problem can be
formulated as a bilevel optimization problem [5] as follows:

min
x,y

f0(x, y) (1a)

s.t. Ay ≤ b, (1b)
Cy = d, (1c)
x = argmin

x
f0(x, y) (1d)

s.t. G(y)x ≤ h(y), (1e)
L(y)x = m(y). (1f)

where the lower-level optimization problem is defined by
Eq.(1d)-(1f), the upper-level optimization problem is defined
by Eq.(1a) - Eq.(1f). Note that although the objective func-
tions remain the same in both the lower-level and upper-level
optimization problem, timing y is fixed in the lower-level
problem but becomes the variable we want to optimize in
the upper-level problem. The lower-level problem is specified
to be an QP, which can be solved efficiently and globally
optimally in x using ”off-the-shelf” solvers.

Our strategy is to use a constrained gradient descent on
the function f?0 (y) = f0(x?(y), y) with x? minimizing the
QP for a fixed timing y. The descent method indeed has
been used to solve bilevel optimization problems [5], and our
framework is a variant of this method. Given an feasible y,
we find a direction −∇f?0 (y) ∈ Rn and a step length α that
can make a sufficient decrease in f?0 (y) while maintaining
the feasibility of the new point ynew = y − α∇f?0 (y). The
gradient∇yf?0 (y) is derived from sensitivity analysis of para-
metric nonlinear programs under mild regularity conditions:

∇yf?0 (y) = ∇yf0(x?(y), y)

= ∇yf0(x?(y), y) + λTG(y) + νTL(y),

where λ and ν are Lagrange multipliers associated with
Eq.(1e) and (1f), respectively.

B. Algorithm

Our bilevel optimization algorithm is given in Algorithm
1, which takes an initial guess y0 of the time allocation as
input. It then iteratively descends f? until some optimality
conditions are satisfied or the maximum number of iterations
is reached.

In Algorithm 1, Line 2 solves a QP problem with a time
allocation scheme y = y0 and then returns the objective
value J and the dual solution (Lagrange multipliers) λ. J
is now the baseline objective and the rest of the algorithm
will improve upon it. Line 4 estimates the gradient of the
objective w.r.t. time using the Lagrange multipliers λ. Line
5 finds a normalized descent direction from the gradient by
projecting the gradient onto the null space of constraints on
t [6]. Line 6, which is a standard backtracking line search,
finds a suitable step length α that gives sufficient decrease in
the objective function. If such an α is found, the line search
algorithm also returns the objective, Lagrange multipliers
and time allocation associated with the optimal α denoted as
Jα, λα and yα, respectively. Then the objective, Lagrange



Algorithm 1 Bilevel-Solve (y0)
1: y ← y0
2: J, λ← Solve-QP(P (y), G(y), h(y), L(y),m(y))
3: for i← 0 to max-iterations do
4: g ← Get-Gradient(λ) . From Eq. (??)
5: p← Project-Gradient(g,A, b, C, d)
6: α, Jα, λα, yα ← Line-Search(t, p) . Backtracking

linesearch
7: if α not found then
8: break
9: if optimality-conditions-satisfied then

10: break
11: J, λ, y ← Jα, λα, yα
12: return t

multipliers and time allocation scheme are updated in Line
11. If the step length α cannot be found during the iteration,
the iteration stops and returns the last t as in Line 8. The
optimality conditions used in Line 9 check whether the norm
of the projected gradient is less than a threshold, or the
change of the objective function is less than a threshold.

III. EXPERIMENTS

A. An example

To illustrate the effect of optimizing time allocation, we
generate trajectories for flying through an outdoor environ-
ment. The environment is a gazebo in a forest, mapped in
[3]. We compare the trajectories generated by our algorithm
and the one described in [4]. Both algorithms take exactly
the same input (safety corridor, initial/end states, veloc-
ity/acceleration bounds, total traversal time, initial guess of
the time allocation), the difference is that ours will optimize
time allocation and the one from [4] will not. The initial
timing is from the heuristics described in [4].

The results, illustrated in Fig.1 and Fig.3, show that
a sub-optimal timing can lead to excessive curviness of
the trajectory, spikes in acceleration and its higher order
derivatives.

B. Numerical Experiments

We demonstrate our method on trajectory planning for
UAVs in the presence of obstacles. Our implementation is
in Python and C++: Python is used in constructing the QP
problem, performing line search and gradient calculation,
while all QP solvers run in C++. Pybind11 [7] is used as
the interface between Python and C++. All the experiments
are carried out on a laptop with a 2.9 GHz Intel Core i5
processor. We make use of the environment generator and
planning pipeline from Gao et al. [4] to generate convex
collision-free corridors. We generated 100 tests by randomly
sample feasible start points and goal points from the envi-
ronment generator and record the flight corridor. Statistics
of the number of segments from these tests are shown in
Fig. 2. Because these involve 6th order splines in a 3D state
space, the number of variables in each optimization problem
is (7× 3 + 1)n where n is the number of segments.

0 5 10 15 20
Number of segments

0
2
4
6
8

10
12
14
16
18
20

Nu
m

be
r o

f t
es

tc
as

es

Fig. 2. Test case descriptive statistics.

TABLE II
EXPERIMENTAL RESULTS (MEAN/MEDIAN). OUR METHOD SHOWN IN

LAST TWO ROWS

Method Time [ms] Suboptimality Constraint Violation

SNOPT 56.44 / 43.34 242.75 / 14.66 0.087 / 0.033
FD+Sqopt 323.03 / 226.66 1.179 / 0.144 0.0 / 0.0
FD+Mosek 1067.16 / 904.25 7.102 / 0.754 0.0 / 0.0
LM+Sqopt 171.43 / 99.25 0.025 / 1.8e-7 0.0 / 0.0
LM+Mosek 330.46 / 288.35 0.016 / 0.0 0.0 / 0.0

We establish a minimum-jerk objective function, and fix
the total amount of time on the trajectory. The initial timing
is set from the heuristic described in [4]. The fixed-duration
constraint is used for fair comparison with the unrefined
trajectory, but we note that our framework can handle general
objective functions and constraints on timing.

Table II summarizes our experiments comparing different
combinations of gradient estimation methods and QP solvers.
As a baseline, we solve the coupled NLP using the sparse
NLP solver SNOPT [8]. Here we simply formulate the joint
spatial and temporal optimization problem as an NLP over
x and y. We provide analytic gradients to SNOPT for solver
robustness, and initialize it with the unrefined time allocation
scheme and the spline coefficients resulting with the first
QP solution. We compare our bilevel Lagrange multiplier
method (LM) against bilevel finite differences (FD), using
two QP solvers, Sqopt [9] and Mosek [10], as representatives
of active-set and interior-point methods. The Suboptimality
column refers to relative suboptimality, which is calculated

as
J − J?

J?
, where J is the objective value achieved by

an algorithm, and J? is the true optimum, which is set
to the minimum of all the objectives returned by different
algorithms.

These results show that SNOPT terminates quickly, but
is very suboptimal. It is actually terminating prematurely
without converging, and it often terminates at an infeasible
point, even though it starts from a feasible trajectory. We
believe that this is because the NLP is somewhat badly condi-
tioned due to the high-order dependence on timing and spline



0 5 10 15
Time [s]

2.5

0.0

2.5
Ac

ce
le

ra
tio

n 
[m

/s
2 ]

X Acceleration
Before Refinement
After Refinement

0 5 10 15
Time [s]

2.5

0.0

2.5

Y Acceleration
Before Refinement
After Refinement

0 5 10 15
Time [s]

2.5

0.0

2.5

Z Acceleration
Before Refinement
After Refinement

Fig. 3. Acceleration w.r.t. time for the refined and unrefined trajectories shown in Fig.1. Spikes on the acceleration are smoothed out by refining time
allocation. Dots along the curves are the knot points, which show the change of time allocation.

coefficients. Bilevel techniques are slower but substantially
more reliable. Our LM method improves overall running
time by 2-3 times beyond FD, and moreover terminates
with a much lower suboptimality. Sqopt is generally faster
than Mosek, and this could be a consequence of active-set
methods’ ability to perform warm start.

The results shown in Fig. 4 explore suboptimality as a
function of time. We record the suboptimality achieved at
each cutoff time. If no iteration has been finished at the cutoff
time, we use the unrefined objective instead. Note that due
to the properties of the steepest descent method, the first
few iterations will give significant decrease in the objective
but the improvement decreases as more time is spent. If this
algorithm were to run in 25Hz (40 ms cutoff time), which is a
reasonable frequency for real-time applications, our method
achieves a mean and median suboptimality of 14.73 and 0.87
respectively, compared to 117.33 and 6.91 achieved by [1].

IV. CONCLUSION

We presented a an efficient bilevel optimization frame-
work to solve trajectory optimization problems. Our results
indicate that we can achieve a significant decrease in the ob-
jective of the trajectory while having real-time performance.
This framework may have applications in path planning for
ground vehicles, humanoid robots and UAVs. Underpowered
robots will particularly benefit from this framework since a
refined trajectory is smoother, less aggressive and easier to
track than its unrefined counterpart.

Future work may include accelerating the gradient descent
by exploiting the structure of the problem.

REFERENCES

[1] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors.” in ICRA. IEEE, 2011, pp. 2520–2525.

[2] A. V. Fiacco and Y. Ishizuka, “Sensitivity and stability analysis
for nonlinear programming,” Annals of Operations Research,
vol. 27, no. 1, pp. 215–235, Dec 1990. [Online]. Available:
https://doi.org/10.1007/BF02055196

[3] F. Pomerleau, M. Liu, F. Colas, and R. Siegwart, “Challenging data
sets for point cloud registration algorithms,” The International Journal
of Robotics Research, vol. 31, no. 14, pp. 1705–1711, Dec. 2012.

[4] F. Gao, W. Wu, Y. Lin, and S. Shen, “Online safe trajectory gener-
ation for quadrotors using fast marching method and bernstein basis
polynomial,” in ICRA. IEEE, 2018, pp. 344–351.

[5] A. Sinha, P. Malo, and K. Deb, “A review on bilevel optimization:
From classical to evolutionary approaches and applications,” IEEE
Transactions on Evolutionary Computation, vol. 22, pp. 276–295,
2018.

0.00 0.05 0.10 0.15 0.20
Cutoff time [s]

0

2

4

6

8

10

12

14

M
ed

ia
n 

Su
bo

pt
im

al
ity

Sqopt+LM
Sqopt+FD
Mosek+LM
Mosek+FD

Fig. 4. Computation time vs suboptimality for UAV path planning using
bilevel optimization. Our Lagrange multiplier method (LM) is compared
against finite differences (FD).

[6] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New
York, NY, USA: Springer, 2006.

[7] W. Jakob, J. Rhinelander, and D. Moldovan, “pybind11
– seamless operability between c++11 and python,” 2017,
https://github.com/pybind/pybind11.

[8] P. E. Gill, W. Murray, M. A. Saunders, and E. Wong, “User’s guide
for SNOPT 7.7: Software for large-scale nonlinear programming,”
Department of Mathematics, University of California, San Diego, La
Jolla, CA, Center for Computational Mathematics Report CCoM 18-1,
2018.

[9] ——, “User’s guide for SQOPT 7.7: Software for large-scale linear
and quadratic programming,” Department of Mathematics, University
of California, San Diego, La Jolla, CA, Center for Computational
Mathematics Report CCoM 18-2, 2018.

[10] MOSEK ApS, MOSEK Optimizer API for C, 8.1., 2018. [Online].
Available: https://docs.mosek.com/8.1/capi/index.html

https://doi.org/10.1007/BF02055196
https://docs.mosek.com/8.1/capi/index.html

	Introduction
	Method
	Spline-Based Trajectory Generation
	Algorithm

	Experiments
	An example
	Numerical Experiments

	Conclusion
	References

